Determination of Local Concentrations of Bupivacaine Using Microdialysis Techniques

Nashwa El-Gendy

Department of Pharmaceutical Chemistry
Acknowledgements

Principle Investigators:
 Cory Berkland, PhD
 Craig Lunte, PhD

Postdoctoral fellow:
 Sara Thomas, PhD

Funding:
 NITPE
Goals

- Investigation of new sampling technique for the large and growing class of locally-acting products
- Development of ‘bioequivalence methods’ of ‘complex products such as…liposomes’
Multimodal analgesia

- Synergistic effect
- Greater efficacy
- Lower doses of each respective agent
- Earlier transition to outpatient setting
- Decreased costs of care
Extended release local anesthetics

- Long duration of analgesic action
- Reduced requirement for postoperative opioids
- Minimal systemic exposure
- Quicker return to normal bodily function and ambulation
FDA approved drugs for postsurgical pain management

- EXPAREL™, a 72-hour, extended-release bupivacaine liposome injectable suspension
- DepoDur™, a single-dose 48 hour extended-release epidural morphine sulfate liposomes
EXPAREL™: structure of a DepoFoam particle

The median diameter of the liposome particles ranges from 24 to 31 μm

Bupivacaine particles

Multivesicular liposomes (MVL)
EXPAREL™: as a model system

- The MVL are suspended in a 0.9% sodium chloride solution

- Each vial contains
 - Bupivacaine 13.3 mg/mL
 - Inactive ingredients
 - Cholesterol
 - Tricaprylin (neutral lipid)
 - 1, 2-Dipalmitoyl-sn-glycero-3 phospho-rac-(1-glycerol) (DPPG), (amphipathic lipid)
 - 1, 2-Dierucoylphosphatidylcholine (DEPC), (amphipathic lipid)

- The pH 5.8 to 7.4
Local monitoring methods

- Monitoring clinical bioequivalence for site-specific products are needed as these complex products advance.

- Ensure generic products meet the performance of innovator brand products.
Generics

- A generic drug must contain the same active ingredients as the innovator product

- Generics are identical or within an acceptable bioequivalent range to the brand drug with respect to PK/PD
Project outline

- Quantify the kinetics of elimination of drug after EXPAREL™ is administered
 - Utilizing microdialysis sampling
 - Monitor the extracellular concentration in the tissue
 - Near the site of administration

- Recommend bioequivalence methods for locally-acting, long acting analgesics
Sampling techniques

- In vitro sampling
- In vivo sampling
 - Blood
 - Tissue
 - Urine
 - Microdialysis
Microdialysis sampling

- Extracellular fluid sampling
- Concentration gradient
- Tissue specific sampling
- Minimal perturbation
- Protein-free samples
Experimental design

1. Develop microdialysis probe implantation procedures both in the hind leg muscle and in the subcutaneous space of conscious, freely-moving rats

2. Evaluate the time course of local concentration of bupivacaine following IM or SC administration of EXPAREL™ and two ‘generics’ formulated in our lab

3. Fit local drug elimination rate data to models and propose bioequivalence standards
In-vitro Extraction Efficiency

Delivery

- Perfusate: Bupivacaine + Antipyrine
- Saline solution in v-vial and stirred continuously and kept at 37°C

Recovery

- Perfusate: Antipyrine 2 µg/mL
- Bupivacaine put in bath containing saline solution, stirred continuously and kept at 37°C
Microdialysis

EE = \(\frac{C_{\text{perfusate}} - C_{\text{dialysate}}}{C_{\text{perfusate}} - C_{\text{sample}}} \)

Recovery

\[EE_R = \frac{C_d}{C_s} \]

Delivery

\[EE_D = \frac{C_p - C_d}{C_p} \]
In vitro extraction efficiency

- The EE$_R$ is not statistically different than EE$_D$ in vitro
- Bupivacaine is not interacting with the membrane materials

<table>
<thead>
<tr>
<th>Extraction Efficiency (EE)**</th>
<th>Antipyrine (Internal standard)</th>
<th>Bupivacaine HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery (EE$_D$)</td>
<td>64 ± 1 (2%)</td>
<td>64 ± 1 (2%)</td>
</tr>
<tr>
<td>Recovery (EE$_R$)</td>
<td>65 ± 3 (5%)</td>
<td>61 ± 3 (5%)</td>
</tr>
</tbody>
</table>

**EE% ± SD (RSD)
Monitoring % free bupivacaine
in vitro

% Free Bupivacaine in dialysate

Time (Hour)

Bupivacaine HCl
Exparel
Generic I

Generic I: contains DPPC instead of the highly expensive DEPC
In vivo experimental timeline

- Bupivacaine administration (IM)
- Bupivacaine administration (SC)
- Animal euthanized
 - Histologic examination
- Monitor pharmacokinetics of bupivacaine
- In vivo determination of EE_D for bupivacaine (20µg/mL) over 4 h
- Implant microdialysis probe (SC)
- Implant microdialysis probe (IM)
Microdialysis implantation experiment

Probe tubing

Site of administration (1 cm from the membrane)

Microdialysis membrane (5 mm)
Awake *in vivo* microdialysis
Microdialysis sampling technique
Microdialysis sampling versus blood sampling

- Over 10 times increase in the concentration of bupivacaine by using microdialysis sampling

K Candiotti, E Haas - Anesthesiology News, 2012
Conclusion

- There was no significant difference between *in vitro* recovery and delivery extraction efficiency (EE) for bupivacaine HCl indicating the viability of microdialysis sampling.

- Formulation of two generics with encapsulation efficiency of ~50%.

- Successful development of microdialysis probe implantation method for long term monitoring of bupivacaine in the subcutaneous space of conscious, freely-moving rats.

- Local concentrations of bupivacaine were significantly higher than systemic concentrations following SC administration of EXPAREL™ while the profiles were similar.
Project future

- Advance techniques for mobile devices that monitor drug concentration at the administration site

- Utilize mathematical models to propose corresponding bioequivalence standards

- Support bioequivalence approaches for other administration routes that could ultimately utilize local sampling (e.g. microdialysis probes)
KU...come and visit
Background

- Postsurgical pain
 - Complications
 - Poor outcomes (decreases QOL)

- Common Analgesic:
 - Opioids
 - Nausea, vomiting, respiratory depression, prolonged ileus, etc.
Local anesthetics: a component of multimodal analgesia

- Eliminate risk of catheter-related complication
- Simplicity and low cost
- Drawback
 - Short duration of analgesia.
 - 4 – 8 h for bupivacaine and ropivacaine.
DepoFoam® Technology Optimizes Pharmacokinetics and Pharmacodynamics

Drug Concentration

Free Bolus

Sustained-Release Formulation

Minimum Therapeutic Level

Time